LESSON 5. 2a

Properties of Rational Exponents and Radicals

Today you will:

- Use properties of rational exponents to simplify expressions with rational exponents.
- Use properties of radicals to simplify and write radical expressions in simplest form.
- Practice using English to describe math processes and equations

Core Vocabulary:

- simplest form of a radical, p. 245
- conjugate, p. 246
- like radicals, p. 246

Previous:

- properties of integer exponents
- rationalizing the denominator
- absolute value

Properties of Rational Exponents

The properties of integer exponents that you have previously learned can also be applied to rational exponents.

G Core Concept

Properties of Rational Exponents

Let *a* and *b* be real numbers and let *m* and *n* be rational numbers, such that the quantities in each property are real numbers.

Property Name	Definition	Example
Product of Powers	$a^m \bullet a^n = a^{m+n}$	$5^{1/2} \cdot 5^{3/2} = 5^{(1/2 + 3/2)} = 5^2 = 25$
Power of a Power	$(a^m)^n = a^{mn}$	$(3^{5/2})^2 = 3^{(5/2 \cdot 2)} = 3^5 = 243$
Power of a Product	$(ab)^m = a^m b^m$	$(16 \cdot 9)^{1/2} = 16^{1/2} \cdot 9^{1/2} = 4 \cdot 3 = 12$
Negative Exponent	$a^{-m} = \frac{1}{a^m}, a \neq 0$	$36^{-1/2} = \frac{1}{36^{1/2}} = \frac{1}{6}$
Zero Exponent	$a^0 = 1, a \neq 0$	$213^0 = 1$
Quotient of Powers	$\frac{a^m}{a^n} = a^{m-n}, a \neq 0$	$\frac{4^{5/2}}{4^{1/2}} = 4^{(5/2 - 1/2)} = 4^2 = 16$
Power of a Quotient	$\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}, b \neq 0$	$\left(\frac{27}{64}\right)^{1/3} = \frac{27^{1/3}}{64^{1/3}} = \frac{3}{4}$

Use the properties of rational exponents to simplify each expression.

a.
$$7^{1/4} \cdot 7^{1/2} = 7^{(1/4 + 1/2)} = 7^{3/4}$$

b.
$$(6^{1/2} \cdot 4^{1/3})^2 = (6^{1/2})^2 \cdot (4^{1/3})^2 = 6^{(1/2 \cdot 2)} \cdot 4^{(1/3 \cdot 2)} = 6^1 \cdot 4^{2/3} = 6 \cdot 4^{2/3}$$

c.
$$(4^5 \cdot 3^5)^{-1/5} = [(4 \cdot 3)^5]^{-1/5} = (12^5)^{-1/5} = 12^{[5 \cdot (-1/5)]} = 12^{-1} = \frac{1}{12}$$

d.
$$\frac{5}{5^{1/3}} = \frac{5^1}{5^{1/3}} = 5^{(1 - 1/3)} = 5^{2/3}$$

$$\mathbf{e.} \left(\frac{42^{1/3}}{6^{1/3}}\right)^2 = \left[\left(\frac{42}{6}\right)^{1/3} \right]^2 = (7^{1/3})^2 = 7^{(1/3 \cdot 2)} = 7^{2/3}$$

Simplifying Radical Expressions

The Power of a Product and Power of a Quotient properties can be expressed using radical notation when $m = \frac{1}{n}$ for some integer *n* greater than 1.

G Core Concept

Properties of Radicals

Let a and b be real numbers such that the indicated roots are real numbers, and let n be an integer greater than 1.

Property Name	Definition	Example
Product Property	$\sqrt[n]{a \cdot b} = \sqrt[n]{a} \cdot \sqrt[n]{b}$	$\sqrt[3]{4} \cdot \sqrt[3]{2} = \sqrt[3]{8} = 2$
Quotient Property	$\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}, b \neq 0$	$\frac{\sqrt[4]{162}}{\sqrt[4]{2}} = \sqrt[4]{\frac{162}{2}} = \sqrt[4]{81} = 3$

Use the properties of radicals to simplify each expression.

a.
$$\sqrt[3]{12} \cdot \sqrt[3]{18} = \sqrt[3]{12 \cdot 18} = \sqrt[3]{216} = 6$$

Product Property of Radicals

b.
$$\frac{\sqrt[4]{80}}{\sqrt[4]{5}} = \sqrt[4]{\frac{80}{5}} = \sqrt[4]{16} = 2$$

Quotient Property of Radicals

An expression involving a radical with index n is in *simplest form* when these three conditions are met:

- Reduce/simply the number inside the radical (no radicands have perfect nth powers as factors other than 1).
- No fractions inside the radical (no radicands contain fractions).
- No radicals appear in the denominator of a fraction.

Rationalize the denominator!!!

• Multiply the expression by an appropriate form of 1 that eliminates the radical from the denominator.

Write the expressions (a) $\sqrt[3]{135}$ and (b) $\frac{\sqrt[5]{7}}{\sqrt[5]{8}}$ in simplest form.

SOLUTION

 $=\frac{1}{2}$

a. $\sqrt[3]{135} = \sqrt[3]{27 \cdot 5}$	Factor out perfect cube.
$=\sqrt[3]{27} \cdot \sqrt[3]{5}$	Product Property of Radicals
$= 3\sqrt[3]{5}$	Simplify.
b. $\frac{\sqrt[5]{7}}{\sqrt[5]{8}} = \frac{\sqrt[5]{7}}{\sqrt[5]{8}} \cdot \frac{\sqrt[5]{4}}{\sqrt[5]{4}}$	Make the radicand in the denominator a perfect fifth power.
$=\frac{\sqrt[5]{28}}{\sqrt[5]{32}}$	Product Property of Radicals
⁵ √28	

Simplify.

For a denominator that is a sum or difference involving square roots,

Example:
$$\frac{1}{5+\sqrt{3}}$$

multiply both the numerator and denominator by the *conjugate* of the denominator.

The expressions

$$a\sqrt{-b} + c\sqrt{-d}$$
 and $a\sqrt{-b} - c\sqrt{-d}$

are conjugates of each other, where a, b, c, and d are rational numbers.

So for the above example the conjugates are:

$$\frac{1}{5+\sqrt{3}}$$
 and $\frac{1}{5-\sqrt{3}}$

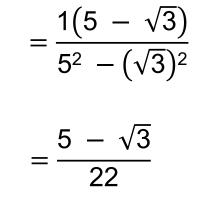
Write
$$\frac{1}{5 + \sqrt{3}}$$
 in simplest form.

 $\frac{1}{5+\sqrt{3}} = \frac{1}{5+\sqrt{3}} \cdot \frac{5-\sqrt{3}}{5-\sqrt{3}}$

SOLUTION Remember: for a denominator that is a sum or difference involving square roots, multiply both the numerator and denominator by the conjugate of the denominator.

The conjugate of $5 + \sqrt{3}$ is $5 - \sqrt{3}$.

Sum and Difference Pattern



Simplify.

Vocab: Like Radicals

Radical expressions with the same index and radicand are like radicals.

To add or subtract like radicals, use the Distributive Property.

Simplify each expression.

a.
$$\sqrt[4]{10} + 7\sqrt[4]{10}$$
 b. $2(8^{1/5}) + 10(8^{1/5})$ **c.** $\sqrt[3]{54} + \sqrt[3]{2}$

SOLUTION

a. $\sqrt[4]{10} + 7\sqrt[4]{10} = (1+7)\sqrt[4]{10} = 8\sqrt[4]{10}$

b. $2(8^{1/5}) + 10(8^{1/5}) = (2 + 10)(8^{1/5}) = 12(8^{1/5})$

c. $\sqrt[3]{54} - \sqrt[3]{2} = \sqrt[3]{27} \cdot \sqrt[3]{2} - \sqrt[3]{2} = 3\sqrt[3]{2} - \sqrt[3]{2} = (3-1)\sqrt[3]{2} = 2\sqrt[3]{2}$

Homework

Pg 248, #3-47 (do at least half)